3.116 \(\int (a+a \cos (c+d x))^{5/2} \sec (c+d x) \, dx\)

Optimal. Leaf size=98 \[ \frac{14 a^3 \sin (c+d x)}{3 d \sqrt{a \cos (c+d x)+a}}+\frac{2 a^2 \sin (c+d x) \sqrt{a \cos (c+d x)+a}}{3 d}+\frac{2 a^{5/2} \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{d} \]

[Out]

(2*a^(5/2)*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d + (14*a^3*Sin[c + d*x])/(3*d*Sqrt[a + a
*Cos[c + d*x]]) + (2*a^2*Sqrt[a + a*Cos[c + d*x]]*Sin[c + d*x])/(3*d)

________________________________________________________________________________________

Rubi [A]  time = 0.202207, antiderivative size = 98, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.19, Rules used = {2763, 2981, 2773, 206} \[ \frac{14 a^3 \sin (c+d x)}{3 d \sqrt{a \cos (c+d x)+a}}+\frac{2 a^2 \sin (c+d x) \sqrt{a \cos (c+d x)+a}}{3 d}+\frac{2 a^{5/2} \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a \cos (c+d x)+a}}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Cos[c + d*x])^(5/2)*Sec[c + d*x],x]

[Out]

(2*a^(5/2)*ArcTanh[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d + (14*a^3*Sin[c + d*x])/(3*d*Sqrt[a + a
*Cos[c + d*x]]) + (2*a^2*Sqrt[a + a*Cos[c + d*x]]*Sin[c + d*x])/(3*d)

Rule 2763

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Si
mp[(b^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(m + n)), x] + Dist[1/(d*
(m + n)), Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^n*Simp[a*b*c*(m - 2) + b^2*d*(n + 1) + a^2*d*(
m + n) - b*(b*c*(m - 1) - a*d*(3*m + 2*n - 2))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&
NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1] &&  !LtQ[n, -1] && (IntegersQ[2*m, 2*
n] || IntegerQ[m + 1/2] || (IntegerQ[m] && EqQ[c, 0]))

Rule 2981

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-2*b*B*Cos[e + f*x]*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(2*n + 3)*Sqr
t[a + b*Sin[e + f*x]]), x] + Dist[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(b*d*(2*n + 3)), Int[Sqrt[a + b*
Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] &&
EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[n, -1]

Rule 2773

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(-2*
b)/f, Subst[Int[1/(b*c + a*d - d*x^2), x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int (a+a \cos (c+d x))^{5/2} \sec (c+d x) \, dx &=\frac{2 a^2 \sqrt{a+a \cos (c+d x)} \sin (c+d x)}{3 d}+\frac{2}{3} \int \sqrt{a+a \cos (c+d x)} \left (\frac{3 a^2}{2}+\frac{7}{2} a^2 \cos (c+d x)\right ) \sec (c+d x) \, dx\\ &=\frac{14 a^3 \sin (c+d x)}{3 d \sqrt{a+a \cos (c+d x)}}+\frac{2 a^2 \sqrt{a+a \cos (c+d x)} \sin (c+d x)}{3 d}+a^2 \int \sqrt{a+a \cos (c+d x)} \sec (c+d x) \, dx\\ &=\frac{14 a^3 \sin (c+d x)}{3 d \sqrt{a+a \cos (c+d x)}}+\frac{2 a^2 \sqrt{a+a \cos (c+d x)} \sin (c+d x)}{3 d}-\frac{\left (2 a^3\right ) \operatorname{Subst}\left (\int \frac{1}{a-x^2} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{d}\\ &=\frac{2 a^{5/2} \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{d}+\frac{14 a^3 \sin (c+d x)}{3 d \sqrt{a+a \cos (c+d x)}}+\frac{2 a^2 \sqrt{a+a \cos (c+d x)} \sin (c+d x)}{3 d}\\ \end{align*}

Mathematica [A]  time = 0.433532, size = 89, normalized size = 0.91 \[ \frac{2 a^2 \tan \left (\frac{1}{2} (c+d x)\right ) \sqrt{a (\cos (c+d x)+1)} \left (\sqrt{1-\cos (c+d x)} (\cos (c+d x)+8)+3 \tanh ^{-1}\left (\sqrt{1-\cos (c+d x)}\right )\right )}{3 d \sqrt{1-\cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Cos[c + d*x])^(5/2)*Sec[c + d*x],x]

[Out]

(2*a^2*Sqrt[a*(1 + Cos[c + d*x])]*(3*ArcTanh[Sqrt[1 - Cos[c + d*x]]] + Sqrt[1 - Cos[c + d*x]]*(8 + Cos[c + d*x
]))*Tan[(c + d*x)/2])/(3*d*Sqrt[1 - Cos[c + d*x]])

________________________________________________________________________________________

Maple [B]  time = 2.497, size = 244, normalized size = 2.5 \begin{align*}{\frac{1}{3\,d}{a}^{{\frac{3}{2}}}\cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \sqrt{a \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( -4\,\sqrt{2}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{a} \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+18\,\sqrt{a}\sqrt{2}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}+3\,\ln \left ( -4\,{\frac{\sqrt{a}\sqrt{2}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}-a\sqrt{2}\cos \left ( 1/2\,dx+c/2 \right ) +2\,a}{-2\,\cos \left ( 1/2\,dx+c/2 \right ) +\sqrt{2}}} \right ) a+3\,\ln \left ( 4\,{\frac{\sqrt{a}\sqrt{2}\sqrt{a \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}+a\sqrt{2}\cos \left ( 1/2\,dx+c/2 \right ) +2\,a}{2\,\cos \left ( 1/2\,dx+c/2 \right ) +\sqrt{2}}} \right ) a \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{ \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}a}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+cos(d*x+c)*a)^(5/2)*sec(d*x+c),x)

[Out]

1/3*a^(3/2)*cos(1/2*d*x+1/2*c)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-4*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^(1/
2)*sin(1/2*d*x+1/2*c)^2+18*a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+3*ln(-4/(-2*cos(1/2*d*x+1/2*c)+2^(1/
2))*(a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)-a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a+3*ln(4/(2*cos(1/2*d*x
+1/2*c)+2^(1/2))*(a^(1/2)*2^(1/2)*(a*sin(1/2*d*x+1/2*c)^2)^(1/2)+a*2^(1/2)*cos(1/2*d*x+1/2*c)+2*a))*a)/sin(1/2
*d*x+1/2*c)/(cos(1/2*d*x+1/2*c)^2*a)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac{5}{2}} \sec \left (d x + c\right )\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(5/2)*sec(d*x+c),x, algorithm="maxima")

[Out]

integrate((a*cos(d*x + c) + a)^(5/2)*sec(d*x + c), x)

________________________________________________________________________________________

Fricas [A]  time = 1.70054, size = 386, normalized size = 3.94 \begin{align*} \frac{3 \,{\left (a^{2} \cos \left (d x + c\right ) + a^{2}\right )} \sqrt{a} \log \left (\frac{a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \, \sqrt{a \cos \left (d x + c\right ) + a} \sqrt{a}{\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + 4 \,{\left (a^{2} \cos \left (d x + c\right ) + 8 \, a^{2}\right )} \sqrt{a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{6 \,{\left (d \cos \left (d x + c\right ) + d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(5/2)*sec(d*x+c),x, algorithm="fricas")

[Out]

1/6*(3*(a^2*cos(d*x + c) + a^2)*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 - 4*sqrt(a*cos(d*x + c) + a
)*sqrt(a)*(cos(d*x + c) - 2)*sin(d*x + c) + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)) + 4*(a^2*cos(d*x + c) + 8*
a^2)*sqrt(a*cos(d*x + c) + a)*sin(d*x + c))/(d*cos(d*x + c) + d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))**(5/2)*sec(d*x+c),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 7.02483, size = 234, normalized size = 2.39 \begin{align*} \frac{\frac{3 \, a^{\frac{7}{2}} \log \left (\frac{{\left | 2 \,{\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{2} - 4 \, \sqrt{2}{\left | a \right |} - 6 \, a \right |}}{{\left | 2 \,{\left (\sqrt{a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - \sqrt{a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}\right )}^{2} + 4 \, \sqrt{2}{\left | a \right |} - 6 \, a \right |}}\right )}{{\left | a \right |}} + \frac{2 \,{\left (7 \, \sqrt{2} a^{4} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 9 \, \sqrt{2} a^{4}\right )} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{{\left (a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a\right )}^{\frac{3}{2}}}}{3 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*cos(d*x+c))^(5/2)*sec(d*x+c),x, algorithm="giac")

[Out]

1/3*(3*a^(7/2)*log(abs(2*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2 - 4*sqrt(2)*abs
(a) - 6*a)/abs(2*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2 + 4*sqrt(2)*abs(a) - 6*
a))/abs(a) + 2*(7*sqrt(2)*a^4*tan(1/2*d*x + 1/2*c)^2 + 9*sqrt(2)*a^4)*tan(1/2*d*x + 1/2*c)/(a*tan(1/2*d*x + 1/
2*c)^2 + a)^(3/2))/d